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Interaction-Induced Collapse of a Section of the Fermi Sea in the Zigzag Hubbard Ladder
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Using the next-nearest-neighbor (zigzag) Hubbard chain as a one-dimensional model, we investigate
the influence of interactions on the position of the Fermi wave vectors with the density-matrix
renormalization-group technique. For suitable choices of the hopping parameters we observe that
electron-electron correlations induce very different renormalizations for the two different Fermi wave
vectors, which ultimately lead to a complete destruction of one section of the Fermi sea in a quantum
critical point.
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Introduction.—Many aspects of the low-energy physics
of an electronic system are influenced by the shape of its
Fermi surface and the occupation of nearby states. Asso-
ciated observables may vary strongly with the temperature
and the strength of the interaction of the electrons.
Changes in the Fermi-surface geometry induce magnetic
and other instabilities. Electron-electron interactions
induce a momentum dependent softening of the Fermi sur-
face, which is responsible for a wide variety of phenom-
ena, such as the loss of magnetic order or high-temperature
superconductivity. In systems where the Fermi surface is
not simply connected, interactions may lead to a partial or
total collapse of parts of the Fermi surface at a quantum
critical point and an associated drastic change in the
physical properties of the system. It is therefore important
to study the renormalization of the individual Fermi
surface sections under the influence of electron-electron
correlations in competition with frustrating interactions.

Recent investigations suggested a spontaneous,
interaction-induced deformation of the Fermi surface of
the 2D t-J model [1] as well as of the (extended) Hubbard
model [2–5]. Because the effect of strong electronic in-
teractions is difficult to study in two- or three-dimensional
systems, these studies either are confined to the weak
coupling limit or involve extensive numerical studies of
effective lattice models. Many aspects regarding the Fermi
surface renormalization for strong interactions remain
presently unclear.

The development of the density matrix renormaliza-
tion group now offers a reliable—though numerically
involved—approach to rigorously study the effect of
strong interaction in one dimension. In this Letter we
report a study of the renormalization of the Fermi wave
vector, or Fermi point, in the Hubbard chain with next-
nearest-neighbor hopping matrix elements as a one-
dimensional model for Fermi surface renormalization.
We confirm results of a recent renormalization group
(RG) analysis for the Fermi point renormalization in
weak coupling. Fermi points close to a saddle point of
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the momentum-distribution function n�k� are predicted
to shift towards the van Hove singularity. A similar
renormalization has been suggested for two-dimensional
systems [1,4]. For strong interactions, the pocket of the
Fermi sea near the saddle point may be emptied com-
pletely, a hypothesis [6] which cannot be verified in weak
coupling. In order to study this prediction rigorously, we
have performed a density-matrix renormalization-group
(DMRG) study of the t1-t2 Hubbard model for rings
with periodic boundary conditions, evaluating the mo-
mentum-distribution function n�k� directly for rings with
up to 80 sites. For larger interaction strength we find a
novel interaction-induced quantum critical point that is
associated with the collapse of a Fermi sea pocket. This
phenomenon is analogous to the opening of a pseudogap,
found experimentally in the high-TC cuprates [7], near the
saddle point of the electronic dispersion.

The Hamiltonian of the zigzag Hubbard ladder (see
Fig. 1, top) is given as

H �
X

n,s

Dn�1,2

tDn�cyn1Dn,scn,s 1 H.c.�

1 U
X

n
c
y
n,"cn,"c

y
n,#cn,# , (1)

where the cy
n,s (cn,s) are fermion-creation (destruction)

operators on site n and spin s �", #. For appropriate
choices of the parameters this model describes either the
low-energy properties of Hubbard ladders [6] or half-filled
edge-sharing double-chain materials like SrCuO2 [8] or
LiV2O5 [9] for which the next-nearest-neighbor hopping
t2 is expected to be substantial.

Generically, the variation of the two hopping parameters
(t1,2) allows changes in the position of the Fermi point
in the noninteracting limit. When the hopping t2 is large
enough, the Fermi sea will split into two separate parts; see
Fig. 1. According to a recent RG analysis for the case of
two separate Fermi seas [6] the Fermi points k

�i�
F (i � 1, 2)

are renormalized as
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FIG. 1. Top: Illustration of the t1-t2 zigzag ladder, the dashed/
full lines correspond to t1�t2 bonds. Bottom: Illustration of
the U � 0 dispersion relation E�k� � 2t1 cos�k� 1 2t2 cos�2k�
for the case t1 � 1, t2 � 23. Also shown (horizontal dashed
line) is the Fermi energy Ef � 23.6736t1 for the quarter-
filled case.
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In weak coupling, the Fermi point shift Dk depends only
on the respective Fermi velocities yi and on the initial mo-
mentum cutoff L0. Equation (2) is rigorous in the weak-
coupling limit.

DMRG.—The evaluation of n�k� as the Fourier trans-
form of the correlation function,

ns�k� �
2
L

LX

n,n0�1

cos�k�n 2 n0�� �cy
n,scn0,s� , (3)

is numerically difficult and costly in the framework of the
DMRG [10,11], in particular for periodic boundary con-
ditions [12]. For large interaction strength, the suppres-
sion of double occupancy reduces the size of the relevant
Hilbert space and improves the convergence properties of
the DMRG procedure [13]. We have therefore decided to
study the case of quarter-filling, where the renormalization
of the Fermi point occurs at relatively large values of the
interaction U. We chose t2�t1 � 23 as a good set of pa-
rameters to observe the Fermi point renormalization effects
at quarter-filling, since one of the Fermi seas is small for
this case (see Fig. 1) and since the weak-coupling RG pre-
dicts gapless Luttinger-liquid behavior for these parame-
ters [6].

We checked for both the convergence of the variational
energy and of the correlation functions by increasing the
number of DMRG states m and found reasonable choices
for the desired accuracy. The weight of the discarded
fraction of the density matrix varies between 1 3 1024 to
2 3 1025 depending on the choice of system size and the
number of states. Figure 2 demonstrates the convergence
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FIG. 2. Convergence of the correlation function n�k� compared
for different chain lengths L and DMRG states m (inset shows
L � 80) for a quarter-filled system with t1 � 1, t2 � 23. The
lines are guides to the eye.

of n�k� both as a function of lattice size and of the number
of states m in the DMRG procedure. Additionally, we per-
formed calculations for open chains and verified that the
behaviors of the real-space correlation function is consis-
tent with those for periodic systems.

Results.—Depending on the relative strength of the
hopping parameters t2�t1 and interaction strength U�t1,
the ground-state phase diagram of the t1-t2 model exhibits
various instabilities towards the formation of states with
spin and/or charge gap [14,15]. We have therefore
investigated the possibility of instabilities towards ferro-
magnetism and phase separation by evaluating DEF �
E�N" 1 1, N# 2 1� 2 E�N",N#�, where E�N", N#� is
the ground-state energy of the quarter-filled system,
and DEph � E�N" 1 1, N# 1 1� 1 E�N" 2 1, N# 2 1� 2

2E�N", N#�. For the parameters considered here no ten-
dency towards an instability was found for any interaction
strength, in accordance with Ref. [15].

In Fig. 3 we present results for the momentum distribu-
tion function for U�t1 � 1, 30, 100. For t2 � 23t1, there
is quarter filling. For U � 0, the two Fermi wave vectors
are k

�1�
F � 0.055p and k

�2�
F � 0.805p. The parameter a �

�y�1�
F 1 y

�2�
F ���2y

�1�
F � � 5.53 entering the weak-coupling

RG equations [6] indicates a gapless Luttinger-liquid phase
at small couplings.

For small U we clearly observe the existence of two
Fermi points k

�1�
F and k

�2�
F (see Fig. 3), which are substan-

tially renormalized with growing interaction strength.
It is evident from the data presented in Fig. 3 that the

magnitude of the momentum distribution function inside
the smaller Fermi sea is reduced substantially stronger
by the interaction than the one inside the large Fermi
point. This is a consequence of the very different val-
ues for the respective Fermi velocities, y1 � 0.658t1 and
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FIG. 3. The DMRG results (symbols) for the momentum-
distribution function for a quarter-filled 80-site system with
periodic boundary conditions. The parameters are t1 � 1,
t2 � 23, and U � 1 and U � 30, respectively. The lines
through the DMRG data are fits by Eq. (4). The dashed vertical
lines indicate the U � 0 positions of the two Fermi points.

y2 � 6.620t1, which differ by 1 order of magnitude. The
energies of particle-hole excitations are 	yFDk; many
more particle-hole excitations are therefore created for the
Fermi sea pocket, which has the smaller yF � y1, result-
ing in a substantial reduction in the occupation numbers
n�k� for k , k

�1�
F .

In order to quantify the results of Fig. 3 we analyze
the Fermi point position as the point where the slope of
the momentum-distribution function is maximal. We find
that our finite-lattice data for the momentum distribution
function n�k� is approximated well by two washed-out step
functions:

n�k� � a0 1 a1 arctan
k 2 k

�1�
F

p1
1 a2 arctan

k 2 k
�2�
F

p2
.

(4)

The quality of this fit is illustrated by the lines in Fig. 3.
Figure 4 shows the dependence of k

�1�2�
F as well as the

total volume of the Fermi sea (in units of p) as a function
of U. The data clearly indicate the presence of a quantum-
critical point with Uc 
 50t1, for which the smaller Fermi
sea collapses. The fit-parameter k

�1�
F entering (4) denotes

a locus of maximal slope in n�k�, which corresponds to
the Fermi-point position for U , Uc. As the calcula-
tions were done for fixed particle density, we expect the
Fermi sea volume to be independent of the interaction-
strength U (Luttinger’s theorem [16]). From Fig. 4 we
see that this expectation is approximatively fulfilled if we
take �p 2 k

�2�
F � 1 k

�1�
F for the volume of the Fermi sea

for U , Uc [open diamonds in Fig. 4] and p 2 k
�2�
F for

U . Uc. Some numerical uncertainty is observed as usual
in numerical simulations, near the critical point. The er-
ror bar in the figure denotes the lattice-induced finite-size
error on the Fermi point position. Within this error all
217203-3
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FIG. 4. The DMRG results for the volume of the small (k
�1�
F ,

filled squares, the line is a guide to the eye) and large (p 2 k
�2�
F ,

filled diamonds) Fermi sea and the total (open diamonds) volume
of the Fermi sea (FSV). The latter is identical with the volume of
the remaining Fermi sea for U . 50. The dashed line indicates
the analytical value of the total FSV at U � 0 (quarter-filling).
The open circles indicate the total FSV under the assumption
that a small Fermi point persists for U . 50.

data are compatible with the exact result in the noninter-
acting limit.

As the data for U � 100 in Fig. 3 indicates, we also
have maxima in the slope of n�k� corresponding to the re-
mainder of the small Fermi sea for U . Uc. To distinguish
between incoherent excitations and a sharp Fermi point we
have plotted the hypothetical total Fermi sea volume (open
circles in Fig. 4) under the assumption that these inflec-
tion points also correspond to Fermi points. As the figure
indicates, this would lead to a massive violation of the
Luttinger theorem for all U . Uc. We thus conclude that
n�k� for small k and U . Uc can be consistently associ-
ated with contributions from incoherent excitations to the
momentum-distribution function.

Conclusions.—In a one-dimensional model we have
analyzed the stability of Fermi sea pockets with respect
to electron-electron interactions and found that sufficiently
strong repulsive interactions lead to a novel quantum criti-
cal point at which the one Fermi sea pocket is destroyed al-
together. We studied this quantum-phase transition within
the t1-t2 zigzag ladder as a prototypical model. We esti-
mate the value of Uc�t1 
 50 for t2 � 23t1 in a quarter-
filled system. We note that the nature and existence of
this transition does not depend on the specific choice of
t1, t2 and the filling, but that a manifold of transitions exist
for appropriate choices of these parameters. The condi-
tions of the existence of the transition are the existence of
two different pockets of the Fermi sea with a significantly
lower Fermi velocity at the Fermi point of the smaller
pocket. In our study we have chosen the values of the
parameters such that the transition becomes amenable to
quantitative treatment with the DMRG, which converges
217203-3
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progressively worse near half-filled systems. This leads to
a critical Uc that seems to be too large to be relevant for
experimental realizations of (1), but we point out that at
least two effects are likely to dramatically reduce the criti-
cal Uc.

(i) At half-filling the t2-t1 model undergoes a Mott-
Hubbard transition for t2 . t1�2. For t2 ! t1�2 the criti-
cal Uc ! 0. It has been estimated [6] that the RG estimate
for the critical Uc obtained from Eq. (2) is in agreement
with numerical results [17,18]. We therefore expect the
critical Uc for the destruction of the small Fermi-surface
pocket to reduce drastically near half-filling. Here we did
not investigate this region due to numerical difficulties.

(ii) In realistic systems the Coulomb interaction will
be longer ranged than the on-site form assumed in the
present study. It is known that longer-range contributions
to the interaction increase substantially the effect of the
interaction on the Luttinger-liquid parameters in the one-
dimensional electron gas [19,20]. We expect a similar
enhanced influence on the renormalized position of the
Fermi points.

We believe our rigorous findings for the one-
dimensional case to be relevant for two dimensions.
We note that the Fermi-surface instability observed in
the present study is qualitatively different from the
Pomeranchuk instability observed in weak coupling
[21] for the 2D Hubbard model, since the Pomeranchuk
instability corresponds to a spontaneous breaking of the
tetragonal (C4) symmetry due to enhanced scattering from
one saddle point to another. The Fermi surface instability
observed in the present study is driven, on the other hand,
by scattering between “normal” and flat parts of the Fermi
surface.
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