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Abstract

We report on the implementation and initial applications of an integral-driven algorithm of the configuration-selecting multi-
reference configuration interaction method for massively parallel architectures with distributed memory. The transition-residue
based matrix element evaluation allows the treatment of Hilbert spaces of 1010 determinants, correlating up to 50 electrons. We
demonstrate the scalability of the method for up to 128 nodes on the IBM-SP2 and for up to 256 nodes on the CRAY-T3E and
report calculations of the vertical excitation energies of benzene and of members of the first row transition metal dihalide
family. q 2000 Elsevier Science B.V. All rights reserved.

Keywords: Multi-reference configuration interaction; Parallel computing; Correlation effects

1. Introduction

For many years the multi-reference configuration
interaction method (MRCI) [1–3] has been one of
the benchmark methods for accurate investigations
into the electronic structure of molecules that require
an adequate treatment of both dynamical and non-
dynamical correlation effects. However, because of
its high computational cost, applications of MRCI
remain constrained to relatively small systems. For
this reason the configuration-selective versions of
MRCI, such as theAK [4], CIPSI [5,6] or MRD-CI
[7–9] methods, have become its most widely used
versions. In this variant only the most important
configurations of the interacting space of a given set
of primary configurations are chosen for the varia-
tional wavefunction [10], while the energy contribu-
tions of the remaining configurations are estimated on
the basis of second-order Rayleigh–Schro¨dinger

perturbation theory [4,5]. The generic lack of exten-
sivity of the MRCI method has at least been partially
addressed with a number of a posteriori [11,12]
corrections and through direct modification of the CI
energy-functional [13–18].

Even within this approximation, the cost of MRCI
calculations remains rather high. The development of
efficient configuration-selecting CI codes [5,6,19,
20,21–24] is inherently complicated by the sparseness
and the lack of structure of the selected state-vector.
In order to extend further the applicability of the
method, it is thus desirable to employ the most power-
ful computational architectures available for such
calculations. Here we briefly report on implementa-
tion and benchmark calculations of a recently devel-
oped massively parallel implementation of the MRD-
CI method for distributed memory architectures. This
implementation constructs the subset of non-zero
matrix elements using a residue-based representation
of the matrix elements that was originally developed
for the distributed memory implementation of MR-
SDCI [25]. This approach allows us to efficiently eval-
uate the matrix elements both in the expansion loop as
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well as during the variational improvement of the
coefficients of the selected vectors.

We briefly review the general approach that allows
an a priori scalable implementation of the matrix
element evaluation of the configuration-selecting
MRCI method and its integral-driven implementation.
We then demonstrate the scalability of the method for
up to 128 nodes of an IBM-SP2 and up to 256 nodes of
a CRAY-T3E for Hilbert spaces of dimension up to
3 × 109 of which up to 8× 106 elements were selected
for the variational wavefunction. We finally present
results for two of our first applications of our object-
oriented program [26], the vertical excitation energies
of benzene and two members of the transition metal
dihalide family, VF2 and VCl2.

2. Methodology

Virtually all the computational effort of the config-

uration selective CI method is concentrated in two
steps. First, the many body field

qi � kfi uHuC l �1�
must be computed for all non-selected configurations
uf il to assess their importance. Here

uC l �
X

j

cj ufil �2�

designates either the set of all previously selected
configurations or a suitably chosen reference set.
Secondly, matrix elements of the same form as Eq.
(1) must be evaluated repeatedly for all selected
configurations with respect to the CI vector in the
variational subspace to determine its eigenstates. In
configuration-selecting CI these operations are
complicated by the lack of structure in the selected
Hilbert space even on single-processor machines.

Several parallelization strategies have been advo-
cated to implement complex algorithms on distributed
memory machines, wheredata locality becomes a
paramount issue. One widely used approach is the
use of client–server models, where one central node
distributes the data among the client nodes on
demand. This model is very versatile and has been
used for a number of applications. However, in
complex algorithms involving large amounts of data,
communication bottlenecks can easily arise as the
communication patterns vary widely with the size of
the active space, the number of electrons and the size
of the orbital basis. In our implementation we have
therefore chosen an alternate communication scheme,
where all operations and data are distributed a priori
among the nodes of the machine according to an orga-
nizing principle that ensures an equal distribution of
the work among the nodes. The advantage of this
approach is that the scalability of the algorithm is a
mathematical necessity, however, much effort must be
devoted to optimize the organizing principle for each
particular application of the scheme.

To compute the matrix elements of the Hamilton
operator we exploit an enumeration scheme in which
each matrix element between two determinants (or
configuration state functions)uf1l and uf2l is asso-
ciated with the subset of orbitals that occur in both
the target and the source determinant. This unique
subset of orbitals is called thetransition residue
mediating the matrix element and serves as a sorting
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Fig. 1. Schematic representation of the two-particle residue-true.
For each element of the configuration-list (A) all possible two-parti-
cle residues are constructed. In the configuration illustrated in (B)
each box represents one occupied orbital, the shaded region corre-
sponds to the residue and the two white boxes to the orbital pair. The
�ne 2 2�-electron residue configuration is looked up in the residue-
tree (C), where an element (D) is added that encodes the orbitals that
where removed, information regarding the permutation required and
the index of the original configuration in the configuration list. Solid
arrows in the figure indicate logical relations ships, dotted arrows
indicate pointers incorporated in the data structure. The residue-list,
along with all elements must be rebuilt once after each expansion
loop, the effort to do so is proportional to product ofn2

e with the
number of configurations. The number of matrix elements encoded
in a single element of the residue-tree is proportional to thesquare
of the number of entriesof type (D).



criterion to facilitate the matrix element evaluation on
distributed memory architectures. For a given many-
body state, we consider a tree of all possible transition
residues as illustrated in Fig. 1. For each such residue
we build a list of residue-entries, composed of the
orbital-pairs (or orbital for a single-particle residue)
which combine with the residue to yield a selected
configuration and a pointer to that configuration. For
configuration-selecting CI the reduction in the number
of selected configurations combined with the large
total memory of modern distributed memory
machines allows us to build the residue tree for the
selected configuration, provided that only the required
section of the residue tree is stored in the different
stages of the computation.

Once the residue tree is available the evaluation of
the matrix elements is very efficient. In theexpansion
step, one must evaluateqi � kfi uHPuC l; where P
projects on the part of the Hilbert space in which
only inactive and active and low orbitals are occupied.
In a singles–doubles calculation the allowed excita-

tions are directly enumerated on the basis of the inter-
nal residues. The information in the tree enables us to
immediately computeall matrix elementsassociated
with the given residue. As a result the overall numer-
ical effort scales strictly linear with the number of
configurationsF i for which matrix elements must
be evaluated and the number of non-trivial operations
per configuration is proportional ton2

e :

In the iteration phasethe full residue tree for all
selected configurations must be built, but a single
copy of the tree can be distributed across all nodes.
All matrix elements associated with a given transition
residue can be locally evaluated if the associated orbi-
tal pairs are present on a unique node. We note that the
residue tree itself (part B in Fig. 2) is not required at
all, only the set of connected orbital pairs is needed.
As a result no lookup operations are required in this
step and one can simply loop over the locally avail-
able section of the orbital pair segments to evaluate all
matrix elements that can be constructed for the
present orbital sets. Since each matrix element is
uniquely identified by its transition residue, the contri-
butions to the many-body field can be simply
collected at the end of this step on a single node to
perform the Davidson iteration. This mechanism
allows a rapid evaluation of all matrix elements
while using the available core memory to its fullest
extent.

We finally note that a local inversion of the accu-
mulated data on the individual nodes allows the
formulation of anintegral drivenversion of the algo-
rithm. Sorting the locally available data by orbital
pairs rather than transition residue allows the selection
of all matrix elements that require specific orbital
pairs. As a result, when a batch of integrals (in physics
notation) is offered to the node, all associate matrix
elements can be evaluated directly without further
lookup. We have therefore implemented modes of
the program in which the integral data is: (a) dupli-
cated on all nodes; (b) split among the nodes; (c) held
on disk on the root node; or (d) split among the disks
of all nodes. Integral modes (b) and (d) allow the use
of very large orbital basis sets.

Going somewhat beyond the standard individually
selecting CI, our implementation was allows the
inclusion of triple and quadruple excitations of
the reference configurations. The energy arising
from such configurations yields the overwhelming
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Fig. 2. Schematic representation of the computation of two-particle
matrix-elements in the expansion step using the residue-tree. For a
given configuration (A) we form all two-particle residues, which are
looked up in the residue tree. In the configuration illustrated in (A)
each box represents one occupied orbital, the shaded region corre-
sponds to the transition residue and the two white boxes to the
orbital pair. The�ne 2 2�-electron residue configuration is looked
up in the residue-tree (B). Each orbital pair (C) associated with the
residue encodes a matrix element with an element of the configura-
tion list (D). The orbital indices of the required integral are encoded
in the orbital pairs in (C), the coefficient of the source configuration
is looked up directly in (D). Only one lookup operation is required
to compute all matrix elements associated with the given transition
residue and only the subset of matrix elements that lead to selected
source-configurations are constructed.



contribution to the energy difference between FCI and
MR-SDCI and is thus of paramount importance for
the development approximately extensive versions
of the MRCI method [13–16]. Since the number of
higher-than-doubly excited configuration rises so
quickly with system size, FCI as well as CI-SDTQ
calculations are prohibitively expensive for all but
the smallest systems. In addition it is possible to
modify the treatment of the TQ excitations, such as
to provide explicit extensive dressings of the CI
matrix elements for incomplete primary spaces.
Configuration-selecting CI provides a particularly
effective, maybe the only viable, compromise
between computational efficiency and accuracy for
the treatment of the TQ space.

3. Results

3.1. Scalability

In a truly scalable implementation great care must
be take to divide all work equally across the partici-
pating nodes. A remaining non-scalable portion of 1%
of the computational effort of a single processor appli-
cation translates into a 100% overhead if the same

task is distributed across 100 nodes. Our massively
parallel algorithm for configurations-selecting MRCI
is therefore based on a client-server model that strictly
separates the calculation from the communication
steps. The latter were chosen to require only global
communication directives of the underlying MPI
communication library which can be expected to execute
efficiently on most modern parallel architectures.

In order to demonstrate the scalability of the imple-
mentation we have conducted benchmark, computed
the ground state energy of benzene in a cc-pVDZ
basis set using active spaces of 6 and 12 active orbi-
tals. The latter calculation was motivated by the desire
to test the program for very large Hilbert spaces, but
the smaller active space is sufficient to adequately
describe e.g. thep–pp excitations of benzene. The
calculation was performed inD2h symmetry at the
experimentalC6v geometry resulting in Hilbert spaces
of up to 3× 109 determinants of which up to 8× 106

were selected for the variational subspace.
The most important consideration in the evaluation

of the performance of a parallel program is its scal-
ability with the number of processors used for a given
calculation. We performed benchmark runs on the
256-node IBM-SP2 of the Karlsruhe supercomputer
center. We also tested the program on the on the 256-
node and 512-node CRAY-TE3’s of the supercompu-
ter center (HLRZ) of the Research Center Ju¨lich and
using the maximally available number of processors
for standard runs, i.e. 256 on the CRAY-TE3 and 128
on the IBM-SP2, respectively. The runs on the CRAY
T3E with its larger data types but smaller core
memory per node forced us to use a somewhat smaller
threshold than on the IBM-SP2 for the scaling runs in
order to be able to finish the calculation even for a
small number of processors. Since all data except
integrals and state-vector is distributed across the
machines the size of the maximally treatable Hilbert
space grows significantly with the number of nodes.
Unfortunately the T3E consists of two machines of
different physical characteristics: the smaller cluster
(128 nodes) permits runs ranging from 16 to 64 nodes,
the larger one allows runs requiring 65–256 nodes.
The interpretation of the scaling data will have to
take this “break” into account.

Fig. 3 shows the total computational effort (exclud-
ing the time to read the integral file) of the aforemen-
tioned scaling runs on the IBM-SP2 as a function of
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Fig. 3. Total CPU time in seconds for the fully converged calcula-
tion of the ground state of the two benchmark calculations described
in the text as a function of the number of nodes of the IBM-SP2. A
straight line indicates perfect scaling of the computational effort
with the number of nodes. The shaded areas in the bars, from top
to bottom, indicate the contributions of the matrix element evalua-
tion, logic and the expansion loop.



the number of nodes. In these plots, the computational
effort for all logic-steps sections are subsumed in one
category, the expansion loop and the iteration loop
constitute the other main components of the program.

We find almost perfect scaling from 48 to 128
nodes for the IBM-SP2. The total computational effort
in the expansion loop, which dominates the overall
computational effort, is constant to within 0.4% in
going from the smallest to the largest number of
nodes. In contrast, the effort associated with logic
and communication grows somewhat with the number
of nodes. This is to be expected, since the communi-
cation cost grows with the number of nodes and a total
of 3.7/9.1 GB of data have to be transmitted across the
machine for the small and large residue tables, respec-
tively. The overall speedup factor from 64 to 128
nodes is 1.86 (see (see Table 1)). On the CRAY-
T3E we find a similar situation: For calculations
with the more realistic six-orbital this calculation
requires less than three minutes total turnaround
time on 128 nodes and the residue table in the iteration
step is spread so thinly that it becomes impossible to
balance. This explains the somewhat large loss of
20% efficiency in going from 65 to 128 nodes. Note
that the data for 64 (65) nodes where obtained on the
small (large) cluster of the T3E described above. The
time differences are indicative of the relative perfor-
mance of these two machines.

3.2. Applications

The above data demonstrate that the residue-driven
matrix element evaluation yields an efficient and scal-
able algorithm on distributed memory architectures.
Unfortunately our program has not yet been integrated
into a complete massively parallel quantum chemistry
code. As a result integral and orbital generation for the
benchmark tests, as well as for the two test applica-
tions we will report here, were performed on single
node workstations and only the resulting integral files
were sent to the supercomputer centers for the MRCI
runs. This cumbersome procedure still complicates
the application of the program, the aforementioned inte-
gration of the configuration-selecting MRCI module
into a complete package is presently under way.

Here we report the results of three calculations of
vertical excitation energies. To demonstrate capabil-
ities and limitations of the algorithm we have
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Table 1
Total CPU times for the benchmark calculations described in the
text on the IBM-SP2 and the CRAY T3E as a function of the
number of nodes. Given is the time in s/node for the expansion
and convergence of a single state in each calculation. The fractional
computational loss between two test runs is defined as the ratio of
the CPU-times per node divided by the perfect speedup factor given
by the ratio of the nodes. The loss-data in the table always refer to
successive entries. The calculation for benzene on the IBM-SP2
employed 12 active orbitals that on the CRAY-T3E used a realistic
active space of six orbitals. Note that the sensible limit for the latter
calculations lies around 64 nodes, where less than 5 min are
required to converge the calculation

Number of nodes Time (s/node) Loss (%)

IBM-SP2 12 active orbitals
16
32
48 10 122
64 7510 0
96 5160 3
128 4012 4

CRAY-T3E 6 active orbitals
16
32 319
64 172 8
65 244
128 147 20
256

Table 2
Vertical p–pp excitation energies of benzene in configuration-
selecting CI in cc-pVDZ basis in a 6 active orbital CAS space in
comparison with experimental results (data as in Ref. [28] and
multi-reference perturbation theory. State-averaged approximate
natural orbital from a BW-MRPT calculation were used for all
states of one symmetry, the calculations were performed inD2h

symmetry at the experimentalC6v geometry

D6h D2h MRD-CI EXP MRMP CASPT2

Singlets
11B2u 11B3u 4.93 (10.03) 4.90 4.71 4.58
11B1u 11B2u 6.30 (10.10) 6.20 5.83 5.89
11E1u 21B2u 7.16 (10.18) 6.94 6.93 6.52
11E2g 11B1g 7.45 (20.35) 7.80 7.74 7.68

Triplets
13B1u 13B2u 4.01 (10.06) 3.95 3.90 3.85
13E1u 13B3u 4.78 (10.02) 4.76 4.44 4.38
13B1u 13B2u 5.40 (20.20) 5.60 5.07 5.22
13E2g 13Ag 7.13 (10.30) 6.83 6.96 6.90



computed the verticalp–pp excitation energies of
benzene as a suitable reference molecule. Table 2
summarizes the results of our calculation in a cc-
pVDZ basis [27] using a six-electron active space in
comparison with multi-reference perturbation theory
calculations [28,29] using 12 orbital active spaces.
MRD-CI by virtue of the individual selection of the
most important configurations should be able to varia-
tionally treat the most important configuration that
cannot be treated adequately in perturbation theory,
while diagrammatic MRPT has to resort to using large
active spaces. This expectation is fulfilled for the
lower excitations in the spectrum where we obtained
very good agreement with experimental observations,
but the quality of the agreement degrades for higher
excitation energies. This may be in part due to the
partial loss of full orthogonality of the wavefunc-
tions of the higher excitations, aggravated by the
fact that our determinant based program computes
both singlets and triplets in a single calculation.
Comparison with the spin-adapted version of the
program will allow us to evaluate this source of
error. A further source of error may be the use of
approximate state-averaged natural orbitals [30] as
opposed to CASSCF orbital in the calculations
reported here.

As a second application we have computed the low-
lying vertical excitation spectrum of two model
compounds of the family of transition metal dihalides.

The accurate quantitative description of the electronic
structure and bonding of many transition metal
compounds remains a challenge even to modern quan-
tum chemical methods. The family of the first row
transition metal dihalides (MX2, M � Sc, … Zn, and
X � F, Cl, Br) represent a simple model series that
nevertheless exhibits key problems associated with
the theoretical description of transition metals in
their chemical environment. Because of their interest-
ing properties many experimental studies have been
undertaken to characterize this family [31–41].
Despite equally active theoretical interest [42–50]
many questions regarding their theoretical description
remain unresolved. A number of theoretical investiga-
tions that at least partially account for the orbital inter-
action and the electron correlation effects [43,48]
have cast the assignments of the spectra based on
ligand field theory (LFT) in doubt. A recent broad-
based investigation of this series using density func-
tional theory (DFT) [50] supported some of these
reassignments but showed significant qualitative and
quantitative discrepancies to experiment and prior
theoretical investigations for bond-lengths, dissocia-
tion and excitation energies. As a result we have
computed the low-lying vertical excitations for two
model members of this family, VF2 and VCl2 at
their experimental geometries. We used a DZP quality
ANO basis set [51] and state-averaged approximate
MR-BWPT natural orbitals as described above for the
benzene calculation. Table 3 summarizes our results
for the vertical excitation energies in comparison to
theadiabaticterm energies in DFT [50]. Although not
directly comparable, the data shows that both the
assignment of the ground state as well as that of
excited states in MRCI is at variance with that of
DFT. While the energy difference between the4Pg

and the4Sg in VF2 are close to the resolution of the
selecting CI method, the results for VCl2 clearly indi-
cate a discrepancy in the ground state assignment at
this level of theory. These results are of particular
interest, as for VF2 and VCl2 they reverse the
assignment of the ground states by DFT to the
original LFT proposition. However, further calcu-
lations in larger basis sets and the possible influ-
ence of relativistic effects should be considered.
Such calculations, along with the investigations
of other members of the MX2 family, are presently
under way.
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Table 3
Vertical excitation energies of VX2 (X � F, Cl) in D2∞ geometry
with R� 176 �A and r � 1:81 �A in a DZP ANO basis in configura-
tion-selecting CI in comparison with adiabatic term energies in DFT
[50]. All energies (in eV) are relative to the respective ground-state
assignments of these calculations, indicated by 0.00, respectively

MRD-CI DFT
Tv Te

VF2
4Pg 0.00 1.12
4Sg 0.05 0.00
2Dg 0.94 2.20
2Pg 1.83 4.17

VCl2
4Pg 0.00 0.81
4Sg 0.29 0.00
2Dg 1.01 1.82
2Pg 2.11 3.35



4. Discussion

Since the computational effort of accurate bench-
mark techniques, such as MRCI and its variants, rises
rapidly with the molecular size, only the use of the
most powerful computational architectures ensures
their continued relevance to the field. Because
massively parallel architectures with distributed
memory will yield the highest computational through-
put in the foreseeable future, it is worthwhile to pursue
the use of these machines for quantum chemical
benchmark calculations. We hope that the development
of the scalable implementation of one of the most
popular variants of the MRCI method family on such
architectures is a useful step in this direction. The
present implementation allows the treatment of Hilbert
spaces and systems that are larger than those that can be
treated on traditional architectures, while significantly
reducing the turnaround time for more moderate appli-
cations. With the ability to routinely treat Hilbert space
exceeding 10 billion determinants many questions that
require a delicate balance of dynamical and non-dyna-
mical correlation effects, e.g. in transition metal chem-
istry, become amenable to the MRCI method.

A spin-adapted implementation of the residue-based
MRCI algorithm, both for MR-SDCI [25] and its
configuration-selecting variant is presently under way.
In addition, it is worthwhile to investigate approxima-
tions, such as multi-reference second-order Brillouin–
Wigner perturbation theory [4,52,53], that eliminate the
selected variational subspace in MRD-CI altogether.
We note that the selection step in MRD-CI scales
with n2

e N2 (where N is the number of orbitals), as
opposed to the iteration step which principally scales
asn2

eN4
: A variant of MR-BWPT was already used in

this work to generate approximate natural orbitals for
the excited state calculations [30]. In combining these
techniques we hope to be able to partition a large part of
the orbital for exclusive treatment in BW-MRPT, simi-
lar to the CIPSI [6] method. This in turn allows the
selection of only the required excitation integrals in a
partial four-index transformation and ultimately the use
of an integral-direct algorithm.
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