
Using Lisp Macro-Facilities for Transferable Statistical
Tests

Kay Hamacher
Dept. of Computer Science, Dept. of Physics, Dept. of Biology

Schnittspahnstr. 10
64287 Darmstadt, Germany

hamacher@bio.tu-darmstadt.de

ABSTRACT
Model-free statistical tests are purely data-driven approaches
to assess correlations and other interdependencies between
observable quantities. The few, distinct patterns how to
perform these tests on the myriad of potentially different
interdependence measures prompted us to use (Common)
Lisp’s macro capabilities for the development of a general,
domain-specific language (DSL) of expectation values under
so-called resampling techniques. Herein, we give an intro-
duction into this statistical approach to big data, describe
our solution, and report on application as well as on further
research opportunities in statistical DSLs. We illustrate the
results based on a toy example.

CCS Concepts
•Computing methodologies → Symbolic and alge-
braic manipulation; Shared memory algorithms; •Software
and its engineering → Domain specific languages;
•Mathematics of computing → Nonparametric statis-
tics; Statistical software;

Keywords
Macros; Domain Specific Language; Statistical Modeling;
Permutation Test

1. INTRODUCTION
Data analysis relies heavily on statistical tests. For exam-

ple, in the traditional frequentist approach such procedures
test, e.g., the significance under a null hypothesis (shortened
to “the null”). In some cases, one cannot or does not want
to formulate a (rather involved) null, but rather relies on
a completely data-driven, model-free approach – so called
parameter-free statistics1

1In contrast to parameter statistics: here, an explicit model
and its respective parameters are fitted to the data and the
significance is judged on the fitting outcome.

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

9th ELS May 9–10, 2016, Kraków, Poland
c© 2016 Copyright held by the owner/author(s).

Then the test is often carried out under so-called resam-
pling. This avoids the need for knowledge of the underlying
probability distribution of any test statistic. Resampling
techniques can be distinguished based on the sample of the
available data that they create and thus by the underlying
question to be answered:

Jackknifing is capable of estimating variance and bias in
a test statistic [15]. Here, we take the original data
and delete d many entries from it, recompute the test
statistic. Upon repetition we get a quantification of the
sensitivity of the test statistic under finite-size effects.
The parameter d characterizes the procedure.

Bootstraping creates an approximate distribution of the
test statistic [6]. To this end, one draws random sam-
ples from the test data repeatedly with replacement.

Permutation Tests have a long tradition [5]. Here, one
shuffles different data columns randomly in order to
destroy potential correlations. This procedure is there-
fore able to assess correlation in the original data on
the background of uncorrelated data via permutation-
s/shuffles.

Typically, one is interested in the distribution of expec-
tation values over a (resampled) data set (under any of the
above procedures). The resampling procedure then com-
putes a function – the test statistic – of the entries in the
original data set first. Then, within a loop, we compute
the same function over and over again over the resampled
data set and obtain a collection of function values. This
collection is what we are interested in: a computational ap-
proximation of the underlying, real distribution of function
values. With respect to this distribution, we can then as-
sess the “relevance”2 of the function value for the original,
un-sampled data set. Note, that the three methods above
are the “basic” variants with a lot of variations in domain-
specific applications; thus, a general framework to allow for
easy implementation of variants is desirable – begging for a
DSL.

1.1 Notation
In the subsequent part, we will deal with real-valued ma-

trices X where the columns contain observations or measure-
ments of different variables and each row ~xi is one measure-
ment of all the variables simultaneously. Note, that time

2significance in statistical parlance

ELS 2016 31

series analysis for, e.g., auto-correlation is possible by copy-
ing a time-lagged version from one column of the matrix into
another.

A frequently employed notation for expectation values
over a sample is

〈
f
(
X̃
)〉

=
1

Nσ

Nσ∑

i=1

f
(
~̃xσ(i)

)
(1)

The sampling function contained in the functions σ(i) → j

and X → X̃ implements the three procedures (permutation
test, jackknife, bootstrap) from above. Some procedures –
such as the jackknife – might change the number of data
points from N to Nσ.

1.2 Related Work
First, there was a package for Lisp implementing gen-

eral statistical methods called XLISP-STAT. This system was,
however, abandoned by the proponents [4]. The main reason
as discussed in the cited paper lies in the fact that a shift
in the user community was recognized; eventually favoring
R. Although we also employ R frequently, it has become ap-
parent since the 90s that it is too much a compromise; on
the surface you can be object-orientated, functional, even
macros are (somewhat) possible. But in the end, neither of
these traits is implemented thoroughly, not to speak about
performance issues. Thus, the motivation [4] to abandon
XLISP-STAT might have been in the light of the 90’s a good
one, our experience tells us otherwise in the meantime. Es-
pecially for prototyping computational procedures by (semi-
)experts a new, more expressive and computational efficient
technology needs to be employed.

Then, there exists some code [2] that implements statisti-
cal procedures and methods or interfaces to external systems
like R [13]. Note, however, that this package implements con-
crete procedures, rather than a macro-based, general frame-
work that automatically creates (Lisp-)code for any conceiv-
able test statistic. Another attempt on parameter statistics
[12] seems to have been abandoned.

Furthermore, several software packages outside the Lisp
ecosystems are available, that follow the same, traditional,
procedure-orientated lines: implementing resampling tech-
niques but without any notion of domain-specific language
that allows for the automatic generation of resampling for
a novel or user-defined measure to work with. The most
prominent ones are R [11], Julia [3] and (I)python [10].
While these languages are capable of self-introspection of
code and Julia has a macro facility similar to Lisp-like lan-
guages they are all, however, not homoiconic to the extent of
Common Lisp. Julia is the only language converging to the
capabilities of Lisp. Thus, almost all these language lack the
ability to mix code fragments of a domain specific language
(DSL) for resampling as well as standard mathematical ex-
pressions of that language.

Work on DSLs in general has a long history [1] – eventually
being strongly interwoven with the history of Lisp [7, 9] A
full review is beyond the scope of the present work but it is
fair to say, that quite a lot of work in the realm of software
engineering has be done using DSLs. Most of this focus
on one special question and thus is barely related to the
concrete question on resampling procedures we address.

1.3 Our Contribution

We have implemented a general framework for resampling
techniques. The data randomization and sampling proce-
dure can be easily replaced by any function coherent to the
interface of existing procedures. We will illustrate this in
Sec. 2.1.

Our framework consists mainly of two macros that expand
nested expectation values of expressions which implement
any conceivable, real-valued function f in Eq. 1. By this,
we can now easily write “statistical formulas” that contain
results from resampling procedures.

We illustrate this by implementing and applying a tradi-
tional measure (covariance) to a multi-dimensional, dynamic
system that produces synthetic data (cmp. Sec. 3.1) for test
purposes, see Sec. 3.

2. LISP TO THE RESCUE: MACROS FOR
PERMUTATION TESTS

Above, we have described how permutation tests show
a repeated pattern: iterating several times over (partially)
mixed choices from an underlying data set, each time recal-
culating a particular measure.

This pattern could potentially be applied to any code that
implements such a measure f of Eq. 1 – as long as this pat-
tern can access and introspect the code of the measure and
“program the program code” to rewrite itself to implement
this pattern again and again for each user-/programmer-
supplied pattern – the realm in which Lisp excels due to
this inherent macro capabilities. To this end, we define here
a domain specific language that describes how a code frag-
ment - namely a function uses data – and thus makes the
measure accessible to a macro implementing any of the above
discusses resampling approaches.

Formulas for a user-provided f in Eq. 1 need to refer to
data elements contained in the (resampled) data set to per-
form their computations. We introduce a notation to this
end that is motivated by the dataframe syntax of the sta-
tistical language R. In our DSL we make the data entry of
any row i of the full data set X̃ available as D$i where i is
a string or a number serving as a “name” for a particular
column.

Thus, we are able to write a measure, e.g., f = xa ·xb as a
form (* D$a D$b). The macro needs then to expand this to
a combination of columns a and b. Note, that in practice we
are always interested in all pairings (a, b) of columns in the
data set. Therefore, D$1 does not refer to the first column
of the data, but rather represents the first column index
currently under investigation.

Following Peter Seibel’s suggestion [14] to first write down
what a macro needs to achieve, we illustrate here how the
resampling of a covariance 〈(D$a− 〈D$a〉) · (D$b− 〈D$b〉)〉
between any pair of columns should be implemented:

(with−resampling test−dataframe 100
#’permutation−test
expectat ion−value

(∗
(− D$a (expectat ion−value D$a))
(− D$b (expectat ion−value D$b))))

Here test-dataframe is an array with test data for the
model in Sec. 3.1. The function permutation-test is de-
scribed in Sec. 2.1.

We achieve this by the macro with-resampling (shown in
Algorithm 1) that first 1) extracts all D$x symbols, 2) sets up

32 ELS 2016

iterators over the combination of columns to be combined in
the abstract syntax tree (AST) implementing the user’s f ,
and 3) returns an array with the values of f for the original
data and for the resampled ones.

While we could have implemented with-resampling as
a function we took the deliberate design decision to imple-
ment it as a macro: we hope to accommodate future exten-
sion such as user-provided aggregation function (histogram
building, for example) beyond the simple expectation value
with this step and make the procedure more widely applica-
ble.

Within the resampling procedure we need to parse the
AST of f and insert appropriate code for expectation value
computations.

To this end, we implement parse-ev-calls as a macro to
make the current, looped-over indices of the sampled data
set available to any formula internal to its respective macro
invocation. We show in Algorithm 2 the concrete implemen-
tation for the expectation value. Thus a code fragment like
above can be converted to an expression in which D$a and
D$b are replaced by respective arefs to the resampled data.

Note, that we cannot naively use subst, subst-if, and
similar facilities to walk the AST tree3 : we must not substi-
tute D$x symbols at different levels of nesting of expectation-
value occurrences. One could achieve this by a rather in-
volved predicate definition, but we decided to achieve the
same result by an appropriate base case in the recursive def-
inition of our parse-ev-calls macro.

2.1 Implementing Sampling Variants
We show in Algorithms 3, 4, 5, and 6 the implementations

of the permutation test, the jackknife, and the bootstrap
with a shared interface.

Furthermore, we have implemented the identity-sample

function, which is a permutation-test without shuffling at
all – thus we are able to compute the test statistic for the
original data using identity-sample. Later on, we will il-
lustrate the usefulness of this detail and the necessary re-
dundancy in identity-sample.

Note, the subtle differences in the argument list between
identity-sample, bootstraping, identity-sample on the
one hand and jackknifing on the other: jackknifing needs
an additional parameter d. We can, however, easily have a
concrete jackknife for a fixed value of d conforming to the
common parameter pattern by employing a lexical closure
as in, e.g.,

1 (defun jack2 (idxs n)
2 (let ((d 2))
3 (j a c k k n i f i n g idxs n d)))

3. RESULTS
All tests were run on a machine under Linux Kernel ver-

sion 4.3.3, SBCL 1.3.1.

3.1 Test Data
To apply our package we created synthetic data4 for a

3as, e.g., suggested at listips.com webpage
4Note, that for illustration purposes the used data set is
irrelevant; we have, however, opted for a system under our
complete control to be able to distinguish, e.g., spurious
correlations from real ones (a ↔ x(1) and e.g. x(2) ↔ x(1),
respectively).

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0
 0.1

 0.2
 0.3

 0.4
 0.5

 0.6
 0.7

 0.8
 0.9

 1

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

x
(3)

x
(1)

x
(2)

x
(3)

Figure 1: The 3D embedding of the time series(
x(1);x(2);x(3)

)
. Clearly each pair of variables covary,

but also the 3-tupel of all three variables shows rich
dynamics and interdependence.

system of three coupled dynamic variables with complex dy-
namics:

f(x) = 4 · x · (1− x) (2)

ai+1 = 0.5 · f (ai) + f (ai−3)

x
(1)
i+1 = f

(
x
(1)
i

)

x
(2)
i+1 = 0.8 · f

(
x
(2)
i

)
+ 0.2 · f

(
x
(1)
i

)

x
(3)
i+1 = 0.5 · f

(
x
(3)
i

)
+ 0.25 · f

(
x
(2)
i

)
+ 0.25 · f

(
x
(1)
i

)

(3)

The function f is the logistic equation in the chaotic regime.
Therefore, the series of x(1) and a values are independent,
chaotic trajectories. At the same time, x(2) and x(3) are
coupled instantaneously to the driving system x(1) and thus
should show correlaction to x(1). We simulated the dynamics
for i ∈ [1 . . . 500]. A embedding plot of the trajectory for

the three components x(1), x(2), x(3) is shown in Fig. 1. The
trajectory of a serves as an example to which the other values
x(1), x(2), x(3) cannot be correlated and thus any metric
must vanish and/or be insignificant. Initial condition were
chosen by a random generator.

3.2 An Example : Covariance
As an example we show the covariance between two data

vectors ~X = (X1, . . . XN) and ~Y = (Y1, . . . YN) defined as

covar
(
~X, ~Y

)
:=

1

N

N∑

i=1

(
Xi − X̄

)
·
(
Yi − Ȳ

)
(4)

with X̄ =
∑

i

Xi and Ȳ =
∑

i

Yi.

~X and ~Y are any pairs of columns in the data set created
in Sec. 3. We demanded above from our DSL this to be
implementable with the code

1 (with−resampling test−dataframe 100
2 #’permutation−test

ELS 2016 33

Algorithm 1 The macro implementing the“frame”for calling general AST representing a measure f . multi-dim-homogenous-
iter is a CLOS-class that iterates over a regular, multi-dimensional grid of column indices (eventually the ones represented be
the a, b, c, . . . in the D$x terminals present within the AST). This mapping of a, b, c, . . . to real column numbers is done via
a hash table that is modified by modify-hash-table. We omit several utility functions for brevity here, such as repetition,
. . .

1 (defmacro with−resampling (data N method &rest as t)
2 ‘ (let ∗ ((arr−dims (array−dimensions , data))
3 (dimens (cadr arr−dims))
4 (idxs (from−zero−to (car arr−dims)))
5 (i n d i c e s (ident ity−sample idxs dimens)))
6 (multiple−value−bind (Ds data−hash−table) (extract−ds ’ , a s t)
7 (let ∗ ((g r id (r e p e t i t i o n Ds dimens))
8 (z (make−array (append g r id (l i s t (1+ ,N))) : i n i t i a l− e l e m e n t 0 . 0)))
9 (loop f o r nn from 0 to ,N do

10 (let ((i dx− i t e r a to r (make−instance ’ multi−dim−homogenous−iter
11 : d imens i ona l i t y Ds :N dimens)))
12 (loop whi le (not (donep idx− i t e r a to r)) do
13 (let ((idx (next idx− i t e r a to r)))
14 (setf data−hash−table
15 (modify−hash−table data−hash−table idx))
16 (let ((w (parse−ev−cal l s data−hash−table i n d i c e s , data , @ast)))
17 (setf (apply #’aref z
18 (append (coerce idx ’ l i s t) (l i s t nn)))
19 w)))))
20 (setf i n d i c e s (funcall , method idxs dimens)))
21 (values z)))))

Algorithm 2 A macro implementing the DSL-specific keyword expectation-value. Note, how we access the data set
elements via an array of (sampled) indices and craft an S-expression in line numbers 7-9 to access those elements. We traverse
the abstract syntax tree (AST) recursively.

1 (defmacro parse−ev−cal l s (Dsht i n d i c e s data &body as t)
2 (labels ((walk (Dsht i d en runID tra fo−ast)
3 (cond ((null en) t ra fo−ast)
4 ((atom en) (i f (and (symbolp en)
5 (start−with−D$p en))
6 (let ((IDX (gensym)))
7 (append ‘ (let ((, IDX (gethash ’ , en , Dsht)))
8 (aref , d (aref , i , runID ,IDX) ,IDX))
9 t ra fo−ast))

10 (i f (eq en ’ quote)
11 t ra fo−ast
12 (cons−non−nil en t ra fo−ast))))
13 ((l i s tp en)
14 (i f (and
15 (symbolp (car en))
16 (eq (car en) ’ expectat ion−value))
17 (let ∗ ((runID2 (gensym))
18 (cont (walk Dsht i d (cdr en) runID2 tra fo−ast)))
19 (concatenate ’ l i s t ‘ (let ((r 0 . 0)
20 (I I (car (array−dimensions , i n d i c e s))))
21 (dotimes (, runID2 I I) (incf r , @cont))
22 (/ r I I)) t ra fo−ast))
23 (mapcar #’(lambda (x)
24 (walk Dsht i d x runID n i l)) en))))))
25 (let ((runID (gensym)))
26 (walk Dsht i n d i c e s data as t runID n i l))))

34 ELS 2016

Algorithm 3 The identity mapping of indices – here, redundancy is necessary to easily implement the permutation test later
on.

1 (defun ident ity−sample (idxs n)
2 (let ∗ ((rowMax (coerce (length i dxs) ’ number))
3 (dims (l i s t rowMax n))
4 (cur r ent (coerce i dxs ’ vector))
5 (z (make−array dims : i n i t i a l− e l e m e n t 0)))
6 (loop f o r j from 0 to (1− rowMax) do
7 (loop f o r i from 0 to (1− n) do
8 (set f (aref z j i) (aref cur rent j))))
9 (values z)))

Algorithm 4 Mapping of indices under the permutation test – each column is shuffled individually to destroy potential
correlations. nshuffle implements Knuth’s shuffling procedure.

1 (defun permutation−test (idxs n)
2 (let ∗ ((z (ident ity−sample idxs n)) ; i n i t i a l i z e wi th i d e n t i t y
3 (rowMax (coerce (length i dxs) ’ number))
4 (cur r ent (coerce i dxs ’ vector)))
5 (loop f o r i from 1 to (1− n) do ; s h u f f l e a l l but the f i r s t column
6 (set f cur rent (n s h u f f l e cur rent))
7 (loop f o r j from 0 to (1− rowMax) do
8 (set f (aref z j i) (aref cur rent j)))
9 f i n a l l y (return z))))

Algorithm 5 The bootstrap – indices are drawn randomly and might occur several times in the created index array.

1 (defun boot s t rap ing (idxs n)
2 (let ∗ ((rowMax (coerce (length i dxs) ’ number))
3 (dims (l i s t rowMax n))
4 (cur r ent (coerce i dxs ’ vector))
5 (z (make−array dims : i n i t i a l− e l e m e n t 0))
6 (w 0))
7 (loop f o r j from 0 to (1− rowMax) do
8 (set f w (random rowMax))
9 (loop f o r i from 0 to (1− n) do

10 (set f (aref z j i) (aref cur rent w)))
11 f i n a l l y (return z))))

Algorithm 6 Jackknifing – d many, randomly chosen samples need to be omitted in this procedure.

1 (defun j a c k k n i f i n g (idxs n d)
2 (let ∗ ((rowMax (− (coerce (length i dxs) ’ number) d))
3 (dims (l i s t rowMax n))
4 (cur r ent (n s h u f f l e (coerce i dxs ’ vector)))
5 (z (make−array dims : i n i t i a l− e l e m e n t 0)))
6 (loop f o r j from 0 to (1− rowMax) do
7 (loop f o r i from 0 to (1− n) do
8 (set f (aref z j i) (aref cur rent j)))
9 f i n a l l y (return z))))

ELS 2016 35

exp
value
exp
value

--

exp
value
exp
value

X
i

X
i

X
i

X
i

--

exp
value
exp
value

Y
i

Y
i

Y
i

Y
i

Figure 2: Tree-representation of the S-expression
for the covariance in Eq. 4. The data vectors X and
Y are used several times.

a x(1) x(2) x(3)

a 0.0667 0.0660 0.0056 -0.0006

x(1) -0.0001 -0.0003 0.0009 0.0029

x(2) 0.0056 -0.0005 0.1323 0.1323

x(3) 0.0395 -0.0066 0.0462 0.0026

Table 1: Covariance values for the original data
from Eq. 2. Note, that parse-ev-calls was ex-
panded so that a and b in D$a and D$b took on all

the combinations of columns, e.g.,
(
a = a, b = x(1)

)
;

(
a = x(3), b = x(2)

)
; and so forth.

3 expectat ion−value
4 (∗
5 (− D$a (expectat ion−value D$a))
6 (− D$b (expectat ion−value D$b))))

which is illustrated in Fig. 2. For brevity, we cannot show
the full macro-expansion here, but publish it on the WWW5.
The length and complexity clearly shows the benefits of a
DSL. Furthermore, one can see in the macro-expanded code
that no local variables other than the ones generated via
gensyms exist, so no variable capture can occur.

When we apply our system to the four-dimensional test
system from above we obtain the resulting covariance matrix
between all variables in Tab. 1.

From the covariance alone we cannot judge on the influ-
ence of any variable onto the other. Eventually, we must
find no connection between a and any of the xs as they are
independent in Eq. 2.

Applying the permutation test with 100 repetitions we ob-
tain the covariance values for 100 shuffled data sets. From
this we can compute the (one-sided6) percentile as the frac-

5http://www.kay-hamacher.de/macro-expanded.lisp
6a one-sided test tests for original data to be larger or
smaller than the resampling ensemble; a two-sided test
would test for the absolute value to be smaller.

tion of covariance matrix entries that turned out to be smaller
in the permutation test than for the original data. We obtain
the output

a x(1) x(2) x(3)

a 0.04 0.92 0.44 0.53

x(1) 0.92 0.54 1.00 1.00

x(2) 0.44 1.00 0.80 1.00

x(3) 0.53 1.00 1.00 0.76

in which we marked the statistic insignificant results under
a one-sided test in red. For significance we apply Fisher’s
well-known criterion of a so-called p-value smaller than 5%
(or a percentile of larger than 0.95). Our permutation test
based assessment shows, that we cannot find a statistically
significant covariance between a and and any of the xs vari-
ables7.

4. OUTLOOK
Above we have demonstrated the first development of a

DSL for statistical resampling technqiues. We motivated
our choice and described the used macros as well as their
rationale. We applied it to a test problem and illustrated
the necessity of such involved resampling techniques as oth-
erwise one might attribute wrongly dependencies between
variables obtained from stochastic processes.

Although our system is at present slower for simple mea-
sures like the covariance in comparison to manually tuned
code like the ones we published for statistics using GPUs
[16], we have with the present work laid ground for a gen-
eral system for prototyping, interactive data science, and hy-
pothesis generating. These steps are increasingly necessary
in the realm of big data as their might be high-dimensional
correlations present for which one cannot always hand-craft
individual solutions. Rather, one can rely on Lisp’s macro
to do the job. At present, our contribution enables data sci-
entists to implement general measures and their resampling
tests easily and fast, with – at present – costs in perfor-
mance.

As this approach is work in progress, several improve-
ments will be implemented and researched in the future. In
particular, we hope to encourage participation of the larger
Lisp community on these issues:

Parallelization the resampling procedures laid out above
are all data-parallel in the columns of a a dataframe.
The iterator over those columns in Algo. 1 is thus “em-
barrassingly parallel” [8], begging for parallelization
via, e.g., the lparallel library.

Sampling variants The implemented algorithms 4, 5, and
6 have a common pattern, but also some subtle differ-
ences. It seems to be promising find at an abstract
level a macro to implement any conceivable resam-
pling/reshuffling technique. Furthermore, in the lit-
erature all three resampling techniques can be found
in variants; thus a DSL is no overkill, but rather a first
step to offer a general framework.

User-provided aggregation mechanisms The expecta-
tion value as a sum over samples as in Eq. 1 is the

7For the diagonal entries: as this a degenerated case, we
compute the variance of a variable that does not change
under the permutation test, thus we can – by construction
of the test – not obtain any significant values.

36 ELS 2016

predominant procedure in statistics. It aggregates the
function values of a measure over a randomized sample
into the arithmetic mean. This is, at present, hard-
coded into the macro parse-ev-calls. Still, other
aggregation procedures are also conceivable. We will
extend the package to provide for any user-provided
mechanism.

Auto-generation of measures On can use Lisp S-express-
ions and Lisp’s ability to modify these to“evolve”ASTs
implementing an appropriate f via, e.g., genetic pro-
gramming.

Caching / Memoization The AST representing the mea-
sure f to be evaluated might be a rather complex,
time-consuming function. Here, memoization techniques
are one way to cope with this; this route will be taken
in the future development of our system.

A first version of the package is made available on the web
under http://www.kay-hamacher.de/Software/Resampling
Lisp.tar.gz.

5. ACKNOWLEDGMENTS
The author gratefully acknowledges financial support by

the LOEWE projects iNAPO & compuGene of the Hessen
State Ministry of Higher Education, Research and the Arts.
This work was also supported by the German Federal Min-
istry of Education and Research (BMBF) within CRISP.

6. REFERENCES
[1] IEEE Transactions on Software Engineering (TSE),

special issue, volume 25, number 3, may/june 1999.

[2] S. D. Anderson, A. Carlson, D. L. Westbrook, D. M.
Hart, and P. R. cohen. Common lisp analytical
statistics package: User manual. Technical report,
Amherst, MA, USA, 1993.

[3] J. Bezanson, A. Edelman, S. Karpinski, and V. B.
Shah. Julia: A fresh approach to numerical
computing. November 2014.

[4] J. de Leeuw. On abandoning XLISP-STAT. Journal of
Statistical Software, 13(1):1–5, 2005.

[5] M. Dwass. Modified randomization tests for
nonparametric hypotheses. Ann. Math. Statist.,
28(1):181–187, 03 1957.

[6] B. Efron. Bootstrap methods: Another look at the
jackknife. Ann. Statist., 7(1):1–26, 01 1979.

[7] P. Graham. ANSI Common LISP. Prentice Hall, Nov.
1995.

[8] M. Herlihy and N. Shavit. The Art of Multiprocessor
Programming. Morgan Kaufmann, 1 edition, Mar.
2008.

[9] D. Hoyte. Let Over Lambda. 2008.

[10] F. Pérez and B. E. Granger. IPython: a system for
interactive scientific computing. Computing in Science
and Engineering, 9(3):21–29, May 2007.

[11] R Development Core Team. R: A Language and
Environment for Statistical Computing. R Foundation
for Statistical Computing, Vienna, Austria, 2008.
ISBN 3-900051-07-0.

[12] T. Rossini. Common Lisp Statistics.
https://github.com/blindglobe/common-lisp-stat,
retrieved 03/15/2016.

[13] T. Rossini. R-Common Lisp gateway.
https://github.com/blindglobe/rclg, retrieved
03/15/2016.

[14] P. Seibel. Practical Common Lisp. Apress, Sept. 2004.

[15] J. W. Tukey. Bias and confidence in not-quite large
samples. Ann. Math. Statist., 29(2):614–623, 06 1958.
just the abstract to a talk.

[16] M. Waechter, K. Jaeger, D. Thuerck, S. Weissgraeber,
S. Widmer, M. Goesele, and K. Hamacher. Using
graphics processing units to investigate molecular
coevolution. Concurrency and Computation: Practice
and Experience, 26(6):1278–1296, 2014.

ELS 2016 37

